

# RAL3-LFRic Regional Model Evaluation

Anke Finnenkoetter, Mike Bush, John Edwards, Carol Halliwell, Christine Johnson, Richard Jones, Anne McCabe, Mark Weeks



# **RAL3-LFRic Acceptance Criteria**

RAL3-LFRic research configuration to act as well-tested baseline for operational-ready RAL4.

RAL3-LFRic evaluation process similar to previous RAL development cycles featuring partner contributions and increasing experiment complexity over time.

### Relative to RAL3-UM, RAL3-LFRic should show no (significant) degradation to

Scientific plausibility

Ensemble Skill

Numerical Stability

Climate extremes, trends, or mean biases

NWP verification scores

scores

numerical Stability



# **Current Status of Suite Development**

- Successfully used the Regional Nesting Suite (RNS) to run LFRic LAM forecasts nested in the UM at the Met Office and Bureau of Meteorology
- Partners working on getting LFRic running on site (e.g., NIWA, MSS)
- Added a post processing task outputting LFRic data on a structured grid
- LFRic functionality is currently being added to the ENS (ensemble suite) and RCS (coupled suite)
- Conversion of UM ancillaries to LFRic ancillaries is currently being added to the RAS (ancillary suite) so it can be used by our UM partners



# Differences working with LFRic data

UM LAM grids and LFRic LAM grids look the same, but file structure differs

- LFRic outputs unstructured ugrid files
  - → Fields are stored as 1D array with mesh data containing information about connectivity
- Meta data is different from UM
  - → Existing scripts relying on STASH codes or certain coordinate names no longer work
- File sizes typically larger → need to work around memory issues



# Differences working with LFRic data

UM LAM grids and LFRic LAM grids look the same, but file structure differs

- LFRic outputs unstructured ugrid files
  - → Fields are stored as 1D array with mesh data containing information about connectivity

RNS post processing task slam conversion

- Meta data is different from UM
  - → Existing scripts relying on STASH codes or certain coordinate names no longer work

"UM-ification" of meta data

File sizes typically larger → need to work around memory issues



# **Evaluation of UM-driven LFRic LAMs**

| Phase 1a | <ul> <li>Focus on limited number of case studies</li> <li>Rule out any obvious degradation or issues in RAL3 LFRic</li> <li>Testing of technical tools and workflows</li> </ul>                 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phase 1b | <ul> <li>More in-depth evaluation of process representation in RAL3-LFRic</li> <li>Verification against observations</li> <li>Testing and evaluation across the Momentum Partnership</li> </ul> |
| Phase 1c | <ul> <li>Preliminary coupled Atmosphere-Ocean simulations</li> <li>Wave coupling simulations when this functionality is available</li> </ul>                                                    |
| Phase 1d | Data assimilation testing                                                                                                                                                                       |
| Phase 1e | Climate characterisation of RAL3-LFRic                                                                                                                                                          |



### Mean Sea Level Pressure

- MSLP lower in LFRic, domain average difference typically 2-3 hPa
- Vertical balancing of LBCs included in last RNS LFRic upgrade did not solve the issue
- Work ongoing to change the way pressure is initialised in LFRic (<u>LFRic Apps Ticket 292</u>)







# **Near-boundary behaviour**

- Many cases are showing instances of unphysical behaviour near the lateral boundaries
- This often manifests in high rain rates
- "Features" can be seen in several other fields, including temperature, visibility, and wind
- LFRic apps ticket #277









# **Near-boundary behaviour**

- Many cases are showing instances of unphysical behaviour near the lateral boundaries
- This often manifests in high rain rates
- "Features" can be seen in several other fields, including temperature, visibility, and wind
- LFRic apps ticket #277







### **Cloud Cover**

- Total cloud cover typically lower in LFRic
- Reduced cloud cover in LFRic driven by large reduction in high cloud
- GC5-LFRic have seen similar behaviour





# 1.5 m Temperature

- Large local differences
- Domain average difference typically < 0.5 K</li>
- LFRic domain average temperature often slightly colder than UM









# **Next Steps**

- LFRic changes addressing the large MSLP bias are under development
- Unphysical near-boundary behaviour to be understood further and addressed
- Understand whether tuning radiation parameters can address large differences in high cloud
- RNS to be upgraded to LFRic apps vn1.1 and to include specific fixes as soon as available and tested
- Focus on technical capability development (LFRic upgrades / fixes, variable resolution, subkm nests, evaluation tools) before re-running (subset of) Phase 1a experiments.